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Numerical stability analysis of a large-scale delay system modeling a lateral semiconductor las
subject to optical feedback
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This paper highlights the use of advanced numerical tools to study the stability of large-scale systems of
delay differential equations~DDEs!. Specifically, we consider a model describing a semiconductor laser subject
to conventional optical feedback and lateral carrier diffusion. The symmetry of the governing rate equations
allows external cavity mode solutions~ECMs! to be computed as steady state solutions. Using the software
packageDDE-BIFTOOL, branches of ECMs are computed as a function of varying feedback strength. The
stability along these branches is computed by solving eigenvalue problems, the size of which is governed by
a step-length heuristic. In this paper, we employ an improved heuristic which substantially reduces the size of
these eigenvalue problems. This approach makes the stability analysis of large-scale systems of DDEs com-
putationally feasible.
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I. INTRODUCTION

This paper deals with the numerical stability analysis
steady state solutions of a large-scale system of delay di
ential equations~DDEs! @1#. Specifically, we consider a
model describing a semiconductor laser subject to conv
tional optical feedback~COF! and lateral carrier diffusion
The numerical stability and bifurcation analysis of sma
scale and medium-scale systems of DDEs is possible u
the software packageDDE-BIFTOOL @2#. However, for large-
scale systems, for example, discretized partial differen
equations with delay, the standard algorithm used to comp
stability with DDE-BIFTOOL can be prohibitively expensive
To overcome this problem, we employ a method that low
the cost of computing the stability of steady state solution
large-scale systems@3#.

The bifurcation analysis of semiconductor lasers w
feedback has been a driving motivation towards the deve
ment of advanced numerical tools for DDEs; see, for
ample, the work on phase-conjugate feedback in Refs.@4–6#
and the work on COF in Refs.@7–9#. Based on a mode
derived by Lang and Kobayashi@10#, semiconductor laser
with feedback are modeled by rate equations for the ev
tion of the complex electric fieldE and the carrier density
within the semiconductor materialN. Feedback or delay
arises from reflection from an external device to the laser
can be used to provide stable operation for high resolu
imaging techniques@11#.

In this paper, we extend the COF laser model to inclu
lateral carrier diffusion and a transverse variation of
pump current applied to the laser@12#, namely, the pump
current is ‘‘on’’ above a longitudinal stripe and ‘‘off’’ on
either side. Hence the carrier density is now dependen
the transverse coordinate. This is possibly the simplest
tension to the DDE modeling the COF laser. Note that m
detailed models include the effects of transverse electric fi
diffraction @13#, multistriped geometries@14#, and thermal
variations@15#. However, our choice of model provides a
ideal test case for our numerical tools.

A model describing the effect of lateral carrier diffusio
for a single-stripe geometry was derived in Ref.@12#. Here,
1063-651X/2004/69~3!/036702~5!/$22.50 69 0367
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the deterministic dynamics were studied. In particular,
presence of low frequency fluctuations@16#, a cause of
power dropouts, was shown. In this paper, we will inves
gate the effect of diffusion on another well-known pheno
enon in the COF laser, that of external cavity modes~ECMs!
or continuous-wave solutions@17#. In the case of COF, thes
solutions operate at a constant carrier densityN, constant
intensity uEu2, and constant angular velocityb. In Ref. @7# a
technique for analyzing these periodic solutions as ste
state solutions usingDDE-BIFTOOL was developed. We will
use the ideas presented in Ref.@7# to study the analogous
steady state solutions of the COF laser subject to lateral
rier diffusion.

The paper is organized as follows. In Sec. II we introdu
the advanced numerical tools we use. In Sec. III we int
duce the rate equations describing the COF laser subje
lateral carrier diffusion and the ECM solutions. In Sec.
we present a stability analysis of these ECMs. Finally,
Sec. V we draw conclusions and discuss future work.

II. NUMERICAL TOOLS FOR THE STABILITY ANALYSIS
OF DDEs

In this section, we briefly describe how the stability
steady state solutions in systems of DDEs is computed. S
tion II A recalls the algorithm implemented in the standa
version ofDDE-BIFTOOL @2,18#, while Sec. II B outlines our
improved approach to the stability computation of larg
scale systems of DDEs@3#.

A. DDE-BIFTOOL

The software packageDDE-BIFTOOL @2#, for the numerical
bifurcation analysis of DDEs, can treat equations with
arbitrary number of delays. For simplicity, we consider t
case of a single delay; that is,

y8~ t !5 f „y~ t !,y~ t2u!…. ~1!

We are interested in the local stability of a steady state s
tion of Eq. ~1!. This is determined by considering the vari
tional equation
©2004 The American Physical Society02-1



th

re

d
ws
u

iz
re

o
y

th

a
an

e

w
s-

p

is
ef

i

s,

ve
ot

o
-

he
e
of

ar
a

he
e the
ta-
of

e-
ion

on
e

t
e

dal

f

d to
s to
d

e
n

of
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y8~ t !5A0y~ t !1A1y~ t2u! ~2!

around this steady state, where the JacobiansA0ª] f /]y(t)
andA1ª] f /]y(t2u) are the derivatives off with respect to
the first and second variables. The spectrum is given by
roots of the characteristic equation,

x1~l!5det~lI 2A02A1e2lu!. ~3!

We now briefly outline how the characteristic roots a
computed; for further details see Ref.@18#. Solving the char-
acteristic equation~3! by Newton’s method requires goo
initial guesses of the roots, which are obtained as follo
Consider the linear map defined by one step of a linear m
tistep ~LMS! method applied to Eq.~2!. This map can be
represented by a matrix whose size is a multiple of the s
of the DDE system. The eigenvalues of this matrix cor
spond ~by an exponential transform! to approximations of
the rightmost characteristic roots. These approximate ro
are subsequently corrected up to a desirable accurac
Newton iterations on the characteristic equation~3!.

The step length used in the LMS method determines
size of the eigenvalue problem.DDE-BIFTOOL implements a
heuristic choice of the step length needed to approxim
well all the roots with real part larger than a given const
r PR; that is, all roots that belong to the half planeH(r )
ª$cPC:Re(c).r %. For this heuristic, the extent of th
spectrum is estimated usingiA0i and iA1i . The size of the
eigenvalue problem grows linearly with these norms. Ho
ever, the use ofiA0i and iA1i may lead to a severe overe
timation of the spectrum inH(r ), especially for large DDE
systems; see Ref.@3#. Hence, a better choice of the ste
length can substantially reduce the computational cost.

B. An improved step-length heuristic

Our approach is based on two steps which we briefly d
cuss in the case of a single delay; for full details see R
@3,19#.

First, a bounded subset that includes all roots that lie
the half planeH(r ) is determined. Consider the roots of

x2~l!5det~lI 2A02A1e2ru2 iv!. ~4!

If v varies in @0,2p), these points form closed curve
which we denote byV(ru). We denote the ‘‘V regions’’ as
the parts of the complex plane encircled by the cur
V(ru). In Ref. @19# it is proven that each characteristic ro
in H(r ) lies in one suchV region. Instead of usingiA0i and
iA1i , the improved step-length heuristic takes the size
V(ru)ùH(r ) into account~generally a much smaller quan
tity!. For a fixedvP@0,2p), points onV(ru) are computed
by solving Eq.~4! with fixed r, u, and v; that is, a linear
~algebraic! eigenvalue problem, which has the size of t
DDE system. Experiments indicate that only a few such
genvalue problems~each corresponding to a fixed value
v) must be solved to locateV(ru) accurately.

In the next step, approximations to the rightmost roots
obtained as inDDE-BIFTOOL. However, our approach uses
special-purpose LMS method@3#, constructed in order to
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minimize the error in the approximated roots. This is t
second reason why a larger step length can be used. Sinc
resulting eigenvalue problem is smaller, the total compu
tional cost of the improved algorithm is smaller than that
DDE-BIFTOOL’s standard algorithm.

III. COF LASER SUBJECT TO LATERAL CARRIER
DIFFUSION

The following model describes a longitudinally singl
mode semiconductor laser subject to lateral carrier diffus
and weak COF,

dE~ t !

dt
5~12 ia!E~ t !z~ t !1hE~ t2u!e2 if, ~5!

T
]N~X,t !

]t
5d

]2N~X,t !

]X2
2N~X,t !1P~X!

2F~X!@112N~X,t !#uE~ t !u2, ~6!

whereE(t)5Ex(t)1 iEy(t) is the complex electric field and
N(X,t) is the transversal carrier density. The given functi
F(X) models the spatial distribution of the electric field. Th
transversal coordinate has been rescaled such thaX
P@20.5, 0.5#. Zero Neumann boundary conditions for th
carrier densityN(X,t) are imposed atX560.5. The timet
is rescaled by the photon lifetime. Furthermore, the mo
gain @20# is given as

z~ t !5

E
20.5

0.5

F~X!N~X,t !dX

E
2`

`

F~X!dX

. ~7!

The rescaled pump currentP(X) has a maximum value o
1.075~when on! and a minimum value of20.8 ~when off!.
The transversal parametersF(X) and P(X) determine the
stripe structure of the laser. Specifically,P(X) is modeled by
a steplike function andF(X) by a Gaussian function@12#;
see Fig. 1. This single-stripe model can easily be adapte
describe a multistriped laser array by simple adjustment
the profiles ofP(X) andF(X). Other parameters correspon
to the linewidth enhancement factora53, the rescaled ex-
ternal cavity round-trip timeu51000, the feedback phas
f50, and the ratio of the carrier lifetime to the photo
lifetime T51000. Furthermore, in the stability analysis

FIG. 1. Pump current profileP(X) and spatial distribution of the
electric fieldF(X).
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Sec. IV we fix the value of the diffusion coefficient atd
51.6831022 and consider the feedback strengthh as our
bifurcation parameter.

Physically, these parameters correspond to a semicon
tor laser with a stripe width of 5mm, pumped at 150 mA
over the stripe and 0 mA either side of the stripe. The va
of the diffusion coefficient corresponds to
31024 m2 s21, the carrier density at threshold is 43108,
the differential gain is 4000 s21, the photon lifetime is 1 ps
the electron lifetime time is 1 ns, and the external cavity
approximately 15 cm.

A. External cavity modes

Analogous to the COF laser, the ECM solutions of E
~5! and ~6! correspond toE(t)[Asexp(ibst) and N(t,X)
[Ns(X), whereAs andbs are constants.

Of particular significance is the fact that Eqs.~5! and ~6!
exhibit symmetry in the transformation (E,N)→(cE,N),
where S15$cPCuucu51% is the symmetry group@21#.
Hence, ECMs are group orbits under this symmetry.
search of ECM solutions, we first rewrite Eqs.~5! and~6! in
a rotating frame of reference@7#

E~ t !5A~ t !exp~ ibt !. ~8!

Here,b is real andA(t)5Ax(t)1 iAy(t) is complex. In this
rotating frame of reference, Eqs.~5! and ~6! become

dA~ t !

dt
5~12 ia!A~ t !z~ t !1hA~ t2u!e2 if2 ibA~ t !,

~9!

T
]N~X,t !

]t
5d

]2N~X,t !

]X2
2N~X,t !1P~X!

2F~X!@112N~X,t !#uA~ t !u2. ~10!

The ECMs can be calculated as steady state solution
Eqs.~9! and~10! for certain values ofb. These valuesbs are
solutions of the following transcendental equation, obtain
by equating real and imaginary parts of the right-hand side
Eq. ~9!,

bs1hA~11a2!sin~f1bsu2arctana!50. ~11!

For computational purposes, theS1 symmetry has to be
resolved by fixing an isolated value of the electric field alo
the group orbit. This is obtained by imposing an extra al
braic constraint. In Ref.@7# the scalar conditionAy50 was
used. This condition has the numerical disadvantage thaAx
and Ay are not of the same order of magnitude. Therefo
we use the condition thatAx5Ay .

B. Spatial discretization

To numerically investigate the above system we must fi
discretize Eq.~10!. We use a second-order central differen
formula on a uniform mesh, with, intervals, over half the
transverse length; that is, overXP@0,0.5#. Hence atX50,
03670
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zero Neumann boundary conditions are imposed. This g
a constant step size in space ofDX50.5/,. The resulting
DDE has size,13; that is,Ax andAy are real scalars, while
N is a real vector of length,11. Note thatP andF are also
vectors of length,11. To approximate the modal gain@see
Eq. ~7!# we use the trapezoidal quadrature rule.

In Sec. IV, we use,5128 subintervals and, hence, th
resulting DDE has sizen5131. Note that this large-scal
DDE has to be augmented with the unknownb @see Eq.~8!#
and the extra conditionAx5Ay . Hence, we solve a nonlinea
system for the scalarsAx , Ay , andb and the vectorN.

IV. RESULTS

We compute ECM solutions of the COF laser with late
carrier diffusion using the numerical procedure outlin
above. Figure 2 shows carrier density profiles of ECMs
Eqs. ~9! and ~10! for varying values of the diffusion coeffi
cient d. Note that for low values ofd an effect associated
with the carrier diffusion, known as optical hole burning,
observed@13#. This effect is eliminated as the value ofd is
increased.

After computing a steady state solution it can be follow
as a parameter is varied using numerical continuation m
ods. Figure 3 shows a number of branches of steady s
solutions computed usingDDE-BIFTOOL. Plotted is the inten-
sity uAu2 against the feedbackh, for the fixed value ofd
51.6831022. Using the technique outlined in Sec. II w
can accurately compute stability along these branches. St
solutions are drawn as a solid line, unstable solutions a
broken line.

As is the case for the COF laser, our analysis shows t
for the most part, one stable steady state solution and
unstable steady state solution are born in saddle-node b
cations (3) ~leftmost limit points of each branch!, with the
stable steady state solution destabilized in a Hopf bifurca
(*). The exceptions to this are the stable steady state s
tion born at the onset of feedbackh and saddle-node bifur
cations in which two unstable steady state solutions are b
Other Hopf bifurcations of unstable steady states are a
marked. Hopf bifurcation points are characterized by a p
of purely imaginary roots of the characteristic equation, a
are responsible for the onset of periodic pulses in the la
output. However, computing such periodic solutions is ve
expensive and beyond the scope of this paper; see Ref.@22#.

We now focus on the branch of steady state solutions b

FIG. 2. Steady state profiles of the carrier densityN(X) com-
puted for, from left to right,d56.7231024, d53.2531023, and
d51.6831022. ~The intensitiesuAu2 are 7.97, 7.69, and 3.33, re
spectively.! The hole burning is shown to be eliminated asd is
increased.
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VERHEYDEN, GREEN, AND ROOSE PHYSICAL REVIEW E69, 036702 ~2004!
in the saddle-node bifurcation (3) at h'1.8631023. The
stable part of this branch is destabilized in a Hopf bifurcat
(*) at h'4.4531023. Using DDE-BIFTOOL we can accu-
rately locate this Hopf bifurcation point. Figure 4 shows t
computed spectrum for this point. Note that due to theS1

symmetry of Eqs.~9! and ~10! we always find an additiona
eigenvalue at zero. The step length used in the spe
purpose LMS method is chosen such that the eigenvalue
the resulting matrix~by an exponential transform! are very
good approximations to the roots of the characteristic eq
tion for Re(l).21. This is indeed the case, as can be s
from the excellent agreement between the approximate r
(1) and the corrected roots after Newton iterations (s).

FIG. 3. Bifurcation diagram obtained by continuation withDDE-

BIFTOOL showing the intensity of steady state solutions vs feedb
strengthh. Stable solutions are drawn as a solid line, unsta
solutions as a broken line. Saddle-node bifurcations are denote
(3), Hopf bifurcations by(*).

FIG. 4. Spectrum for the Hopf bifurcation point ath'4.45
31023. The approximated roots are marked by (1) and their cor-
rections by Newton iterations by (s).
03670
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Figure 4 shows that many more roots are approximated w
by solving the eigenvalue problem, exceptions being th
roots far from the origin.

To obtain Fig. 4 we usedDDE-BIFTOOL with the improved
step-length heuristic; this resulted in an eigenvalue prob
of dimensionM56550. Although large, this is feasible o
current desktop computers. If one were to employ the st
dard heuristic used byDDE-BIFTOOL, an eigenvalue problem
of dimensionM5947 916 should be solved; this is comp
tationally intractable.

In general, the dimension of the eigenvalue value pr
lems used to calculate the Hopf bifurcation points in Fig
varied betweenM56550 and M58384. While for the
saddle-node bifurcation points the dimension of the eig
value value problems ranged fromM5917 toM57336, for
increasingh. For all bifurcation points, the dimension of th
eigenvalue value problem using the standard heuristic
DDE-BIFTOOL wasM'948 000.

V. CONCLUSIONS

We have shown how advanced numerical methods can
used to analyze the steady state stability of large-scale
tems of DDEs. Specifically, we have usedDDE-BIFTOOL

alongside a technique to compute the stability of a lar
scale DDE modeling a semiconductor laser with COF a
subject to lateral carrier diffusion.

After exploiting the symmetry of the governing rate equ
tions, we computed branches of steady state soluti
~ECMs! as a function of varying feedback strength. We co
puted stability along these branches by solving eigenva
problems, the size of which are governed by a heuristic s
length. In particular, an improved heuristic was shown
reduce the size of the eigenvalue problem substantially
general, this makes the stability analysis of large-scale DD
computationally feasible.

It should be noted that this single-stripe geometry is a
present in semiconductor lasers with saturable absor
@23#. There the laser is modeled by ordinary different
equations for the evolution of the carrier density on the str
and on either side, and the photon number. The laser
shown to be excitable and self-pulsating solutions w
found. For future work, an investigation of the periodic s
lutions of the COF laser with lateral carrier diffusion ma
reveal similar results.

Furthermore, this paper showcases the use and deve
ment of numerical tools for the study of stability in larg
scale systems of DDEs.
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