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Numerical stability analysis of a large-scale delay system modeling a lateral semiconductor laser
subject to optical feedback
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This paper highlights the use of advanced numerical tools to study the stability of large-scale systems of
delay differential equationdDES). Specifically, we consider a model describing a semiconductor laser subject
to conventional optical feedback and lateral carrier diffusion. The symmetry of the governing rate equations
allows external cavity mode solutiofECMs) to be computed as steady state solutions. Using the software
packageDpDe-BIFTOOL, branches of ECMs are computed as a function of varying feedback strength. The
stability along these branches is computed by solving eigenvalue problems, the size of which is governed by
a step-length heuristic. In this paper, we employ an improved heuristic which substantially reduces the size of
these eigenvalue problems. This approach makes the stability analysis of large-scale systems of DDEs com-
putationally feasible.
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[. INTRODUCTION the deterministic dynamics were studied. In particular, the
presence of low frequency fluctuatiori$6], a cause of
This paper deals with the numerical stability analysis ofpower dropouts, was shown. In this paper, we will investi-
steady state solutions of a large-scale system of delay diffegate the effect of diffusion on another well-known phenom-
ential equations(DDEs) [1]. Specifically, we consider a €non in the COF laser, that of external cavity moeSMs)
model describing a semiconductor laser subject to converr continuous-wave solutiod7]. In the case of COF, these
tional optical feedbacKCOP and lateral carrier diffusion. solutions operate at a constant carrier denslfyconstant
The numerical stability and bifurcation analysis of small-intensity|E|?, and constant angular velocity In Ref.[7] a
scale and medium-scale systems of DDEs is possible usir§chnique for analyzing these periodic solutions as steady
the software packagene-BIFTooL [2]. However, for large- State solutions usingDe-BIFTOOL was developed. We will
scale systems, for example, discretized partial differentiaise the ideas presented in RET] to study the analogous
equations with delay, the standard algorithm used to computgteady state solutions of the COF laser subject to lateral car-
stability with DDE-BIFTOOL can be prohibitively expensive. rier diffusion.
To overcome this problem, we employ a method that lowers The paper is organized as follows. In Sec. Il we introduce
the cost of computing the stability of steady state solutions irthe advanced numerical tools we use. In Sec. lll we intro-
large-scale systeni8]. duce the rate equations describing the COF laser subject to

The bifurcation analysis of semiconductor lasers withlateral carrier diffusion and the ECM solutions. In Sec. IV
feedback has been a driving motivation towards the develop¥e present a stability analysis of these ECMs. Finally, in
ment of advanced numerical tools for DDEs; see, for ex-Sec. V we draw conclusions and discuss future work.
ample, the work on phase-conjugate feedback in Réfs6]
and the work on COF in Refd7-9]. Based on a model |I. NUMERICAL TOOLS FOR THE STABILITY ANALYSIS

derived by Lang and Kobayasfil0], semiconductor lasers OF DDEs
with feedback are modeled by rate equations for the evolu- _ ) ) ) .
tion of the complex electric fiel& and the carrier density !N this section, we briefly describe how the stability of

within the semiconductor materiall. Feedback or delay Sté@dy state solutions in systems of DDEs is computed. Sec-

arises from reflection from an external device to the laser an§on !l A recalls the algorithm implemented in the standard

can be used to provide stable operation for high resolutioff€'Sion OfDDE-BIFTOOL [2,18], while Sec. Il B outlines our

imaging techniquef11]. improved approach to the stability computation of large-
In this paper, we extend the COF laser model to include>c@le systems of DDES].

lateral carrier diffusion and a transverse variation of the

pump current applied to the lasgt2], namely, the pump A. DDE-BIFTOOL

current is “on” above a longitudinal stripe and “off” on  The software packagene-siFTooL [2], for the numerical
either side. Hence the carrier density is now dependent opifyrcation analysis of DDESs, can treat equations with an

the transverse coordinate. This is possibly the simplest eXsrpitrary number of delays. For simplicity, we consider the
tension to the DDE modeling the COF laser. Note that morgase of a single delay; that is,

detailed models include the effects of transverse electric field

diffraction [13], multistriped geometrie§l4], and thermal y' () ="f(y(t),y(t—6)). D
variations[15]. However, our choice of model provides an
ideal test case for our numerical tools. We are interested in the local stability of a steady state solu-

A model describing the effect of lateral carrier diffusion tion of Eq.(1). This is determined by considering the varia-
for a single-stripe geometry was derived in Réf2]. Here, tional equation
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y' (D=Agy(D)+Ary(t—6) (2) e
1
around this steady state, where the Jacobins of/dy(t) 05 02
andA,:=9f/dy(t— ) are the derivatives dfwith respectto & | =
the first and second variables. The spectrum is given by the 0.1
roots of the characteristic equation, 08
bs 0 Y 0 05
Xl()\)zde()\l_Ao_Alei)\(}). (3) X X

FIG. 1. Pump current profil®(X) and spatial distribution of the

We now briefly outline how the characteristic roots are -
electric fieldF(X).

computed; for further details see REI8]. Solving the char-

acteristic equation(3) by Newton’s method requires good . . . . . L
initial guesses of the roots, which are obtained as followsmnimize the error in the approximated roots. This IS the
Consider the linear map defined by one step of a linear mu|§ecor!d reason why a larger step length can be used. Since the
tistep (LMS) method applied to Eq(2). This map can be rgsultmg elgenva[ue problem is .smal]er, the total computa-
represented by a matrix whose size is a multiple of the sizé\Ional cost O,f the improved a!gonthm is smaller than that of
of the DDE system. The eigenvalues of this matrix corre-"PEBIFTOOLS standard algorithm.

spond (by an exponential transfopto approximations of

the rightmost characteristic roots. These approximate roots !l COF LASER SUBJECT TO LATERAL CARRIER

are subsequently corrected up to a desirable accuracy by DIFFUSION

Newton iterations on the characteristic equatidn The following model describes a longitudinally single-

_ The step length used in the LMS method determines the,qqe semiconductor laser subject to lateral carrier diffusion
size of the eigenvalue problemDE-BIFTOOL implements a 514 weak COF

heuristic choice of the step length needed to approximate

well all the roots with real part larger than a given constant dE(t) _ B

reR; that is, all roots that belong to the half platkr) g - A-TEM®E() + nE(t—0)e ¢, )
:={ce C:Re(c)>r}. For this heuristic, the extent of the
spectrum is estimated usifié| and|A,||. The size of the
eigenvalue problem grows linearly with these norms. How- T’?N(X’t) =d PNCX,t)
ever, the use ofAo| and|A,|| may lead to a severe overes- ot ax?
timation of the spectrum itd(r), especially for large DDE ’
systems; see Ref3]. Hence, a better choice of the step —F(X)[1+2N(X,D][E(D]?, (6)
length can substantially reduce the computational cost.

—N(X,t)+P(X)

whereE(t) =E,(t) +iE(t) is the complex electric field and
N(X,t) is the transversal carrier density. The given function
F(X) models the spatial distribution of the electric field. The

Our approach is based on two steps which we briefly distransversal coordinate has been rescaled such Xat
cuss in the case of a single delay; for full details see Refse[ —0.5, 0.5. Zero Neumann boundary conditions for the
[3,19. carrier densityN(X,t) are imposed aK= *=0.5. The timet

First, a bounded subset that includes all roots that lie inis rescaled by the photon lifetime. Furthermore, the modal
the half planeH(r) is determined. Consider the roots of gain[20] is given as

B. An improved step-length heuristic

N)=dei( Al —Ay—Ae "0719), (4) 05

X2( ( 0 1 ) FOXON(X,H)dX

If o varies in[0,27), these points form closed curves, ()= 0% (7)
which we denote by)(r #). We denote the £) regions” as fm F(X)dX

the parts of the complex plane encircled by the curves —w

Q(r0). In Ref.[19] it is proven that each characteristic root
in H(r) lies in one such) region. Instead of usinfA| and The rescaled pump curreR(X) has a maximum value of
A4, the improved step-length heuristic takes the size ofl.075(when on and a minimum value of- 0.8 (when off).
Q(r 8) NH(r) into account(generally a much smaller quan- The transversal parameteF{X) and P(X) determine the
tity). For a fixedw € [0,27), points onQ)(r #) are computed stripe structure of the laser. Specificaly(X) is modeled by
by solving Eq.(4) with fixed r, 8, and w; that is, a linear a steplike function andF(X) by a Gaussian functiofil2];
(algebrai¢ eigenvalue problem, which has the size of thesee Fig. 1. This single-stripe model can easily be adapted to
DDE system. Experiments indicate that only a few such eidescribe a multistriped laser array by simple adjustments to
genvalue problemgeach corresponding to a fixed value of the profiles ofP(X) andF(X). Other parameters correspond
) must be solved to locat@ (r §) accurately. to the linewidth enhancement factar=3, the rescaled ex-

In the next step, approximations to the rightmost roots ardgernal cavity round-trip timeg=1000, the feedback phase
obtained as irbDE-BIFTOOL. However, our approach uses a ¢=0, and the ratio of the carrier lifetime to the photon
special-purpose LMS metho[8B], constructed in order to lifetime T=1000. Furthermore, in the stability analysis of
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Sec. IV we fix the value of the diffusion coefficient dt 05 05 05

=1.68x10 2 and consider the feedback strengghas our

bifurcation parameter. g 0 z 0 g 0
Physically, these parameters correspond to a semiconduc¢® z “

tor laser with a stripe width of um, pumped at 150 mA 08 s 08

over the stripe and 0 mA either side of the stripe. The value _g5 0 05 05 0 05 05 0 05
of the diffusion coefficient corresponds to 3 X X X
-4 2 1 ; - ;
x10* m’ s~%, the carrier %ensﬂy at threshold |S>_<4108: FIG. 2. Steady state profiles of the carrier den$iX) com-
the dlﬁerent|ql gain is 4OOQ , the photon lifetime is 1 PS, puted for, from left to rightd=6.72x 104, d=3.25x 103, and
the electron lifetime time is 1 ns, and the external cavity isy— 1 6g<10-2 (The intensitiegA|? are 7.97, 7.69, and 3.33, re-
approximately 15 cm. spectively) The hole burning is shown to be eliminated cds
increased.
A. External cavity modes

Analogous to the COF laser, the ECM solutions of EqsZ€r0 Neumann boundary conditions are imposed. This gives

(5) and (6) correspond toE(t)=A.exp(bd) and N(t,X) a constant. step size in_ space &K=0.5/. The resulting
=N(X), whereA, andb, are constants. DDE has sizel + 3; that is,A, andA, are real scalars, while

Of particular significance is the fact that E4S) and (6) N is a real vector of lengtli + 1. N_ote that? andF are also
exhibit symmetry in the transformationE(N)— (cE,N),  Vectors of length! + 1. To approximate the modal galisee
where Si={ce(|[c|=1} is the symmetry group21]. EO: (7)] we use the trapezoidal quadrature rule.

Hence, ECMs are group orbits under this symmetry. In N Sec. IV, we usef=128 subintervals and, hence, the

search of ECM solutions, we first rewrite EqS) and(6) in ~ resulting DDE has size=131. Note that this large-scale
a rotating frame of referend@] DDE has to be augmented with the unknolwfsee Eq(8)]

and the extra conditioA,=A, . Hence, we solve a nonlinear
E(t)=A(t)expibt). (8) system for the scalaig,, A,, andb and the vectoN.

Here,b is real andA(t) = A,(t) +iA(t) is complex. In this IV. RESULTS

rotating frame of reference, Eg&) and (6) become
We compute ECM solutions of the COF laser with lateral

dA(t) ) g carrier diffusion using the numerical procedure outlined
gt~ ATTa)AMLD + 7A(t—0)e TP —ibA(L), above. Figure 2 shows carrier density profiles of ECMs of
(9) Egs.(9) and(10) for varying values of the diffusion coeffi-
cient d. Note that for low values ofl an effect associated
with the carrier diffusion, known as optical hole burning, is
—N(X,t)+P(X) observed 13]. This effect is eliminated as the value dfis
at G increased.
2 After computing a steady state solution it can be followed
~FOO[L+2NX D] IAM]® (10 as a parameter is varied using numerical continuation meth-

The ECMs can be calculated as steady state solutions 8ps. Figure 3 shows a number of branches of steady state

Eqgs.(9) and(10) for certain values ob. These valueb are splutionzs computed USINGDE-BIFTOOL. Plot'ted is the inten-
solutions of the following transcendental equation, obtainecE“l/ |6'g‘>|< 1%92'”3 f[he fﬁedbaﬁwi for thellflxzd. vaslue olfld
by equating real and imaginary parts of the right-hand side of = - Using the technique outlined in Sec. 1l we
Eq. (9) can accurately compute stability along these branches. Stable
T solutions are drawn as a solid line, unstable solutions as a

b+ nV(1+ a2)sin ¢+ b.6— arctany) = 0. 11 broken line.
s+ V(L + a%)sin( ¢+ b6 arctan) ) As is the case for the COF laser, our analysis shows that,

For computational purposes, 18 symmetry has to be for the most part, one stable steady state solution and one
resolved by fixing an isolated value of the electric field alongUnstable steady state solution are born in saddle-node bifur-

the group orbit. This is obtained by imposing an extra alge£ations (<) (leftmost limit points of each branghwith the
braic constraint. In Ref.7] the scalar conditio,=0 was stable steady state solution destabilized in a Hopf bifurcation

used. This condition has the numerical disadvantageAhat (*)- The exceptions to this are the stable steady state solu-
and A, are not of the same order of magnitude. Therefore!ion born at the onset of feedbaakand saddle-node bifur-
we use the condition tha,=A, . cations in which two unstable steady state solutions are born.

Other Hopf bifurcations of unstable steady states are also
marked. Hopf bifurcation points are characterized by a pair
of purely imaginary roots of the characteristic equation, and
To numerically investigate the above system we must firsare responsible for the onset of periodic pulses in the laser
discretize Eq(10). We use a second-order central differenceoutput. However, computing such periodic solutions is very
formula on a uniform mesh, witli intervals, over half the expensive and beyond the scope of this paper; sed B&f.
transverse length; that is, ov&re[0,0.5]. Hence atX=0, We now focus on the branch of steady state solutions born

2
TaN(x,t) 4 N(X,t)

B. Spatial discretization
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3.4 - - - - - - Figure 4 shows that many more roots are approximated well
by solving the eigenvalue problem, exceptions being those
roots far from the origin.

To obtain Fig. 4 we usedDE-BIFTOOL with the improved
step-length heuristic; this resulted in an eigenvalue problem
of dimensionM =6550. Although large, this is feasible on
current desktop computers. If one were to employ the stan-
dard heuristic used byDE-BIFTOOL, an eigenvalue problem
of dimensionM =947 916 should be solved; this is compu-
tationally intractable.

In general, the dimension of the eigenvalue value prob-
lems used to calculate the Hopf bifurcation points in Fig. 3
varied betweenM =6550 and M =8384. While for the
saddle-node bifurcation points the dimension of the eigen-
value value problems ranged frawh=917 toM = 7336, for
3-20 1 5 3 4 5 increasingy. For all bifurcation points, the dimension of the
3 eigenvalue value problem using the standard heuristic in

DDE-BIFTOOL was M ~ 948 000.

3.35¢

Intensity (|A|2)
w
w

325}

FIG. 3. Bifurcation diagram obtained by continuation witbe-
BIFTOOL showing the intensity of steady state solutions vs feedback

strength 5. Stable solutions are drawn as a solid line, unstable V. CONCLUSIONS
solutions as a broken line. Saddle-node bifurcations are denoted by .
(X), Hopf bifurcations by(*). We have shown how advanced numerical methods can be

used to analyze the steady state stability of large-scale sys-

in the saddle-node bifurcationx() at 7~1.86x10 3. The tems of DDEs. Specifically, we have usebE-BIFTOOL

stable part of this branch is destabilized in a Hopf bifurcation2/0"gside a technique to compute the stability of a large-

(*) at n~4.45<10°3. Using DDE-BIFTOOL We can accu- scale DDE modeling a semiconductor laser with COF and

rately locate this Hopf bifurcation point. Figure 4 shows theSUbJeCt to Iate_r_al carrier diffusion. .
computed spectrum for this point. Note that due to 8le After exploiting the symmetry of the governing rate equa-

. i tions, we computed branches of steady state solutions
symmetry of Eqs(9) and(10) we always find an additional . :
eigenvalue at zero. The step length used in the SpeCiaLECMs) as a function of varying feedback strength. We com-

purpose LMS method is chosen such that the eigenvalues g]uted stability glong the_se branches by solving eigenvalue
the resulting matrixby an exponential transfonmare very problems, the size of which are governed by a heuristic step

good approximations to the roots of the characteristic equal—ength' In pa_rtlcular, an _|mpr0ved heuristic was sho_wn to
educe the size of the eigenvalue problem substantially. In

tion for Re\) > — 1. This is indeed the case, as can be see eneral, this makes the stability analysis of large-scale DDEs
from the excellent agreement between the approximate roof - . y y 9
computationally feasible.

+ i i - . .
(+) and the corrected roots after Newton iterationis)( It should be noted that this single-stripe geometry is also
present in semiconductor lasers with saturable absorbers

180 [23]. There the laser is modeled by ordinary differential
equations for the evolution of the carrier density on the stripe
100} and on either side, and the photon number. The laser was
shown to be excitable and self-pulsating solutions were
found. For future work, an investigation of the periodic so-
@ sof lutions of the COF laser with lateral carrier diffusion may
S reveal similar results.
g ob® - Furthermore, this paper showcases the use and develop-
= ment of numerical tools for the study of stability in large-
E 5o scale systems of DDEs.
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